Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiome ; 17(1): 13, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35346385

ABSTRACT

BACKGROUND: Although fertilization and crop rotation practices are commonly used worldwide in agriculture to maximize crop yields, their long-term effect on the structures of soil microorganisms is still poorly understood. This study investigated the long-term impact of fertilization and crop rotation on soil microbial diversity and the microbial community structure in four different locations with three soil types. Since 1996, manure (MF; 330 kg N/ha), sewage sludge (SF; 330 and SF3x; 990 kg N/ha), and NPK (NPK; 330 kg N/ha) fertilizers were periodically applied to the soils classified as chernozem, luvisol and cambisol, which are among the most abundant or fertile soils used for agricultural purposes in the world. In these soils, potato (Solanum tuberosum L.), winter wheat (Triticum aestivum L.), and spring barley (Hordeum vulgare L.) were rotated every three years. RESULTS: Soil chemistry, which was significantly associated with location, fertilization, crop rotation, and the interaction of fertilization and location, was the dominant driver of soil microbial communities, both prokaryotic and fungal. A direct effect of long-term crop rotation and fertilization on the structure of their communities was confirmed, although there was no evidence of their influence on microbial diversity. Fungal and bacterial communities responded differently to fertilization treatments; prokaryotic communities were only significantly different from the control soil (CF) in soils treated with MF and SF3x, while fungal communities differed across all treatments. Indicator genera were identified for different treatments. These taxa were either specific for their decomposition activities or fungal plant pathogens. Sequential rotation of the three crops restricted the growth of several of the indicator plant pathogens. CONCLUSIONS: Long-term fertilization and crop rotation significantly altered microbial community structure in the soil. While fertilization affected soil microorganisms mainly through changes in nutrient profile, crop rotations lead to the attraction and repulsion of specific plant pathogens. Such changes in soil microbial communities need to be considered when planning soil management.

2.
Microorganisms ; 9(12)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34946099

ABSTRACT

The biodeterioration of audio-visual materials is a huge problem, as it can cause incalculable losses. To preserve these cultural heritage objects for future generations, it is necessary to determine the main agents of biodeterioration. This study focuses on identifying fungi, both from the air and smears from photographs and cinematographic films that differ in the type of carrier and binder, using high-throughput sequencing approaches. The alpha diversity measures of communities present on all types of carriers were compared, and a significant difference between cellulose acetate and baryta paper was observed. Next, the locality, type of carrier, and audio-visual material seem to affect the structure of fungal communities. Additionally, a link between the occurrence of the most abundant classes and species on audio-visual materials and air contamination in the archives was proven. In both cases, the most abundant classes were Agariomycetes, Dothideomycetes, and Eurotiomycetes, and approximately half of the 50 most abundant species detected on the audio-visual materials and in the air were identical.

3.
Microorganisms ; 8(9)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32911685

ABSTRACT

An understanding of how fertilization influences endophytes is crucial for sustainable agriculture, since the manipulation of the plant microbiome could affect plant fitness and productivity. This study was focused on the response of microbial communities in the soil and tubers to the regular application of manure (MF; 330 kg N/ha), sewage sludge (SF; 330 and SF3x; 990 kg N/ha), and chemical fertilizer (NPK; 330-90-300 kg N-P-K/ha). Unfertilized soil was used as a control (CF), and the experiment was set up at two distinct sites. All fertilization treatments significantly altered the prokaryotic and fungal communities in soil, whereas the influence of fertilization on the community of endophytes differed for each site. At the site with cambisol, prokaryotic and fungal endophytes were significantly shifted by MF and SF3 treatments. At the site with chernozem, neither the prokaryotic nor fungal endophytic communities were significantly associated with fertilization treatments. Fertilization significantly increased the relative abundance of the plant-beneficial bacteria Stenotrophomonas, Sphingomonas and the arbuscular mycorrhizal fungi. In tubers, the relative abundance of Fusarium was lower in MF-treated soil compared to CF. Although fertilization treatments clearly influenced the soil and endophytic community structure, we did not find any indication of human pathogens being transmitted into tubers via organic fertilizers.

SELECTION OF CITATIONS
SEARCH DETAIL
...